Răspunsuri

2014-05-03T08:18:31+03:00
Ai asa :
5x - 12 + 3x - 3 \sqrt{3}  ≤ 3x + 2 \sqrt{3} x + x - 5 \sqrt{3} x - 6 <=> 8x -  2 \sqrt{3} x - x + 5 \sqrt{3} x ≤ 12 + 3 \sqrt{3}
<=> 7x + 3 \sqrt{3} x ≤ 12 + 3 \sqrt{3} <=> x( 7 +  3 \sqrt{3} ) ≤ 12 + 3 \sqrt{3}   <=>  x ≤ ( 12 + 3 \sqrt{3} ) / ( 7 +  3 \sqrt{3} ) => x ≤ (57 - 15 \sqrt{3} ) / 25 => x ≤  1,24.

In multimea nr. intregi, ai solutii toate nr. intregi ≤ 1 => S = { _ _ _, -2, -1, 0 ,1 }

Bafta!