Răspunsuri

2014-11-09T09:21:57+02:00
A:6=c1 rest 3 =>a=6c1+3=>a=3(2c1+1) a:3=c2 rest 2=>a=3c2+2=>a+1=3c2+3=>a+1=3(c2+1) Rezulta din amândouă ca nu exista numere....
6 4 6
2014-11-09T09:31:47+02:00
Folosim Metoda Reducerii la Absurd:
Presupunem ca exista un nr nat n cu proprietatea din enunt.
Deci , din Teorema impartirii cu rest avem:
n=6*c+3=3*(2*c+1)
n=3*d+2 si adunand 1 in ambii membri obtinem
n+1=3*d+3=3*(d+1)
Prin urmare avem 3 divide n si 3 divide (n+1), deci 3 va divide si diferenta lor, adica 3 divide 1. Contradictie!
Deci presupunerea ce exista n .... este falsa, prin urmare nu exista numere nat cu proprietatea din enunt.
1 5 1