Răspunsuri

2014-11-06T14:48:18+02:00
2n+1 apartine D lui 2 => ca 2n+1 apartine { 1,2} / -1 => 2n apartine {0, 2} /2 => n apartine 0 si 2 => 2n+1 sunt divizibile cu 2 
si faci asa pentru toate ... 
9 3 9
2014-11-06T15:09:11+02:00
A) 2n + 1 este un numar impar, deoarece, indiferent daca n este par sau impar, 2n este par, adunat cu 1 rezulta un numar impar.
b) 6n + 2 = 2( 3n + 1) este un numar par, deoarece indiferent daca n este par sau impar, 3n + 1 se inmulteste cu 2 si rezultatul este un numar par.
c) 2n + 3 = 2n + 2 + 1 = 2( n + 1) + 1 este un numar impar, deoarece 2 ( n + 1 ) este intotdeauna un numar par, adunat cu 1 rezulta un numar impar.
d) n(n+1) este un numar par, deoarece daca n este un numar impar, n + 1 este par, prin inmultire rezulta un numar par. Daca n este par, atunci n + 1 este impar, dar prin inmultirea unui numar par cu un numar impar se obtine un numar par.

Numerele divizibile cu 2 sunt B), D)
9 4 9