Răspunsuri

2014-10-05T11:00:17+03:00
Teorie
x real, n intreg
[x]=n <=> n<=x<n+1
[n]=n
[x+n]=[x]+n
a) [x]=2-x <=> x=2-[x], x este intreg si [x]=x , x=2-x, x=1
b) [x+1]=[x]+1 => [x]=-5 , -5<=x<-4
c)[3x]=13=> 13<=3x<14 etc
d)2<=x+1/2<3  etc
e)x+0.5<=2x<x+1.5 si x+.5 intreg
.5<=x<1.5 si x+.5 intreg
x=0.5
2 5 2