Demonstrati ca A = 5la puterea1 +5la puterea 2+5la puterea 3 + 5 la puterea 4
a)A divizibil cu 5

b)A divizibil cu 3


Demonstrati ca : 15 la puterea n + 3 la puterea n+2 × 5 la puterea n+1 divizibil cu 45
n mai mic sau egal , n apartine N

1

Răspunsuri

2014-10-02T20:06:29+03:00

a)   A = 5+5² +5³ +5^4 = 5(1+5+5² +5³) divizibil cu 5    b) A=5(1+5)+5³(1+5) = 6×5(1 +5²) ⇒ A divizibil cu 3

15^n + 3^(n+2) ·5^(n+1) = 15^n + 15^n ·9·5 = 15^n +45·15^n ⇒45·15^n este divizibil cu 45 ptr. orice n; iar 15^n , ptr. n ≥ 2 este divizibil cu 5 si cu 9 adica, e divizibil cu 45