Răspunsuri

Cel mai inteligent răspuns!
2014-09-04T19:02:51+03:00
|x-2|= \left \{ {{x-2  ,   x-2 \geq 0} \atop {-(x-2),x-2<0}} \right.
|x-2|= \left \{ {{x-2,x \geq 2} \atop {-x+2,x<2}} \right.
|1-x|= \left \{ {{1-x, 1-x \geq 0} \atop {-(1-x),1-x<0}} \right.
|1-x|= \left \{ {{1-x,x  \leq 1  } \atop {-1+x,x>1}} \right.   - aici am trecut asa,fiindca am inmultit cu -1 si s-a schimbat semnul si sensul inecuatiei
|3x-6|= \left \{ {{3x-6,3x-6 \geq 0} \atop {-(3x-6),3x-6<0}} \right.
|3x-6|= \left \{ {{3x-6,x \geq 2} \atop {-3x+6,x<2}} \right.
|10-5x|= \left \{ {{10-5x,10-5x \geq 0} \atop {-(10-5x),10-5x<0}} \right.
|10-5x|= \left \{ {{10-5x,x \leq 2} \atop {-10+5x,x>2}} \right.

am explicitat normal si am rezolvat fiecare conditie ca pe o inecuatie normala,ca sa am doar x la conditie

4 5 4