Aflati numerele de forma abc , mai mici decat 500 , daca indeplinesc conditiile
a) dau restul 5 la impartirea cu 9
b) (a+B+C):7
c) (abc+2):7

1
la b si c conditia este ca suma sa fie divizibila cu 7?
iar la c nu ai gresit? din cate stiu eu, conditia era (acb+2) div cu 7...
da asa este :D

Răspunsuri

Cel mai inteligent răspuns!
  • Utilizator Brainly
2014-09-04T12:56:20+03:00
A)
abc:9= k rest 5
abc=9k+5
-stabilim care este cel mai mic: 100:9= 11 rest 1 ⇒k>11
pt k=12 , avem abc=12*9+5=113
-stabilim care este cel mai mare :499:9=55 rest 4⇒k<55
pt k=54 avem abc=54*9+5=491
abc={113,122,131,140,...,491}

b)cel mai mic : a=1, b=0=> c=6
cel mai mare : a=4, b=9, c=8
abc= {106,115,124,133,142,149,151,158,160,167,176,185,194,
          205,214,223,232,239,241,248,250,257,266,275,284,293,
          304,313,322,329,331,338,340,347,356,365,374,383,392,399,
          403,412,419,421,428,437,446,455,464,473,482,489,491,498}        
        

c) (abc+2):7
=> abc=7*k -2
cel mai mic : 100:7=14 rest 2=>k>14;
k=15=> abc=7*15-2=103
cel mai mare:499:7=71 rest 2  , deci (495+2)este divizibil cu 7
cel mai mare abc=495
=> abc={103,110,117,124...495}

DACA CERINTA ERA (acb+2) div cu 7
atunci abc={130,101,171,142,...459}


15 4 15