Aratati ca numerele x si y sunt patrate perfecte:
x=[2^30^2·(2^6)^100·2+(64^4)^100÷2^899]^2 si
y=5·(3^2002-3^2001-9^1000)

1
la x este 2 la puterea 30 la puterea 2?
iar [(2 la puterea 6) la puterea 100] ori 2 , sau (2 la puterea 6) la puterea (100 ori 2)?
2 la puterea 30 la puterea 2 si [2 la puterea 6) la puterea 100] ori 2

Răspunsuri

2014-06-20T15:35:51+03:00
x=[2^30^2·(2^6)^100·2+(64^4)^100÷2^899]^2
e patrat perfect, ce e scris ca ceva la puterea 2

y=5·(3^2002-3^2001-9^1000)

y=5×(3^2002-3^2001-3^2000)
y=5×3^2000 (9-3-1)
y=5x5×3^2000
y=(5x3^1000)²
deci e patrat perfect
35 4 35